BRIEF COMMUNICATION

Optical and Structural Investigation of KMgLa(PO₄)₂ Phosphate Doped with Europium

Shaolong Tie, Qiang Su,1 and Yaqin Yu

Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China

Received November 22, 1993; in revised form March 21, 1994; accepted March 30, 1994

A new compound KMgLa(PO₄)₂, isotypic with monoclinic LaPO₄, is reported. Its cell parameters have been determined from X-ray powder diffraction data. Crystallization occurs in the monoclinic space group $P2_1/n$ (No. 14) with a=6.839(3) Å, b=7.066(1) Å, c=6.523(3) Å, $\beta=103.42(4)^\circ$, and Z=2. It was found that the KMgLa(PO₄)₂ phase was isostructural with monoclinic LaPO₄. The difference between them was that half of the La atoms in LaPO₄ were couplingly substituted with the same amount of Mg and K atoms. This isomorphous substitution was confirmed by IR and Eu³⁺-doped excitation and emission spectra and by elemental analysis of single crystals. The spectroscopic data were compared with those of LaPO₄: Eu³⁺. • 1995 Academic Press, Inc.

INTRODUCTION

In recent years, a series of double phosphates with general formula ABLn (PO_4)₂ (A = alkali, B = alkaline earth, Ln = La-Lu and Y), isotypic with $LaPO_4$, have been reported. Most of them show a hexagonal structure (1, 2); a few of them belong to the monoclinic or tetragonal system (3). It seems that each double phosphate ABLn (PO_4)₂ also possesses three allotropies, just like those of $LnPO_4$ (Ln = La-Gd). Our recent studies have confirmed this point of view. For ABLn (PO_4)₂, the monoclinic phase forms at lower temperatures, and the hexagonal one mainly exists at higher temperatures.

It is worth noting that some of the monoclinic phases of ABLn (PO₄)₂ doped with R^{3+} ($R^{3+} = Eu^{3+}$, Ce^{3+} , and Ce^{3+} — Tb^{3+}) exhibit strong luminescence under 254-nm excitation and could be used as trichromatic phosphors or for a special usage.

The crystal structure of monoclinic $LnPO_4$ (Ln = La and Ce) has been re-examined by Beall *et al.* (4) and Mullica *et al.* (5), respectively. Both demonstrated that the structure is isotypic with monazite. The Ln atom is ninefold coordinated with oxygen atoms and the LnO_9 polyhedron is non-regular, viz., an irregular pentagon with two oxygen atoms above and two oxygen atoms

¹ To whom correspondence should be addressed.

below the plane of the pentagon. The point symmetry for the Ln local site is Cs. As shown in Fig. 1, large channels along the c-axis exist in the monoclinic phase of $LnPO_4$. Our recent experimental results proved that half of the Ln^{3+} ions could be replaced simultaneously by B^{2+} and A^+ ions with no striking change in the crystal lattice. One is located at the site of Ln^{3+} ; the other could be accommodated into the channels.

Herein, we report one of the analogues of monoclinic $LnPO_4$, e.g., KMgLa(PO₄)₂. Its IR absorption and Eu³⁺-doped excitation and emission spectra are discussed in comparison with those of monoclinic LaPO₄ phase.

EXPERIMENTAL

The powder samples were obtained with a solid-state reaction from stoichiometric mixtures of potassium carbonate, magnesia (analytic grade), rare-earth oxides (4N-grade, Yuelong Co., Shanghai), and diammonium hydrogen phosphate (analytic grade). In order to get a single phase, an appropriate amount of flux and two firing steps were necessary, one at 200–400°C for 6 hr and the other at 880°C for several hours with interposed grinding. The LaPO₄ samples were synthesized based on Ref. (6).

The single crystals of KMgLa(PO₄)₂ were grown by the flux method. The mixture with KCl: KMgLa(PO₄)₂ ratio of 5:1 was melted in a platinum crucible at a suitable temperature, and then held overnight at 950°C. The temperature was reduced at 5°C/hr to 650°C, after which the furnace was turned off. The cooled material, which contained some needle-shaped crystals, was washed in cool water. The final crystals gave the same X-ray powder pattern and IR spectrum.

The X-ray powder diffraction data of KMgLa(PO₄)₂ were carried out with a Rigaku X-ray diffractometer (model D/max-II B) using single-crystal Si powder as an internal standard. The unit-cell parameters were calculated from a least-squares refinement of 20 stronger $CuK\alpha_1$ reflection planes ($\lambda = 1.54056$ Å) collected between $2\theta = 10^\circ$ and $2\theta = 60^\circ$ at room temperature.

FIG. 1. Stereoscopic packing diagram for monoclinic LaPO₄.

The emission and excitation spectra were measured at 300 K with a Hitachi fluorescence spectrophotometer (model M-850). The IR absorption spectra were obtained with a Perkin-Elmer infrared spectrophotometer, model 580B.

CRYSTAL STRUCTURE OF KMgLa(PO₄)₂

The elemental analysis for P and La in KMgLa(PO₄)₂ single crystals was carried out mainly based on Ref. (7). The AAS method was used to measure the K and Mg contents. Finally, we gained the following results (in weight percent): K 11. 78 (theoretical value 9.97), Mg 6.76 (6.20), La 34.80 (35.41), and P 15. 91 (15.79), respectively. On account of the errors from the method and our instrument of AAS (Model, P-E 403), the results for the K, Mg values seem higher to some degree than we expected. The values for La and P content, which are in good agreement with the formula KMgLa(PO₄)₂, however, prove that the single crystals we obtained really have the composition KMgLa(PO₄)₂.

The X-ray powder pattern of KMgLa(PO₄)₂ was very similar to that of LaPO₄ (JCPDF 12-285). The $d_{\rm exp.}$, hkl, $I/I_{\rm o}$, and $d_{\rm calc.}$ are given in Table 1.

The crystal data calculated from the powder pattern of KMgLa(PO₄)₂ are a = 6.839(3) Å, b = 7.066(1) Å, c = 6.523(3) Å, $\beta = 103.42(4)^{\circ}$, Z = 2, space group $P2_1/n$; $D_x = 4.277(1)$, $D_{\text{exp.}} = 4.242(2)$, and V = 307 Å³. Its cell constants and unit-cell volume are comparable to those of monoclinic LaPO₄ (8). The powder density of KMgLa(PO₄)₂ was determined with a pycnometer using CCl₄ as a solvent instead of water, since the KMgLa(PO₄)₂

powder is hygroscopic and partly hydrolyzes (pH > 8) in water

Further information about the Mg²⁺ and K⁺ positions will be reported in the future from the single-crystal data of KMgLa(PO₄)₂.

SPECTROSCOPIC PROPERTIES OF KMgLa(PO₄)₂

IR Spectra

IR spectra of $LnPO_4$ were studied in detail by Hezel and Ross (9). Structural differences between hydrous and anhydrous $LnPO_4$ can be distinguished by their IR spectra. For monoclinic forms of anhydrous $LnPO_4$ (Ln = La-Tb) with the Cs site symmetry of the PO_4 group, usually five or six bands appear in the ν_3 region and four in the ν_4 region, as shown in Table 2.

Our IR data for anhydrous LaPO₄ are in agreement with those of Hezel and Ross. The sample doped with Eu³⁺

TABLE 1
X-Ray Powder Data for Lanthanum
Magnesium Potassium Phosphate

$d_{\text{exp.}}$ (Å)	I/I_0	hkl	d _{calc.} (Å)		
5.223	10		5.2389		
4.844	8	110	4.8436		
4.721	17	011	4.7210		
4.203	34	Ī11	4.2084		
4.141	14	101	4.1368		
3.570	12	111	3.5700		
3.533	17	020	3.5330		
3.326	54	200	3.3262		
3.186	13	002	3.1725		
3.120	100	120	3.1203		
3.011	15	210	3.0095		
2.970	4	$\overline{2}11$	2.9715		
2.887	74	$\overline{1}12$	2.8870		
2.610	20	$\overline{2}02$	2.6195		
2.467	8	112	2.4695		
2.450	13	$\overline{2}12$	2.4561		
2.423	6	220	2.4218		
2.350	3	<u>1</u> 22	2.3566		
2.208	19	031	2.2081		
2.158	29	311	2.1555		
1.985	26	212	1.9851		
1.956	5	301	1.9566		
1.911	10	2 31	1.9122		
1.887	23	<u>1</u> 32	1.8891		
1.812	7	023	1.8147		
1.774	14	231	1.7748		
1.756	16	132	1.7563		
1.742	8	$\overline{2}23$	1.7459		
1.708	8	140	1.7073		
1.663	3	400	1.6631		
1.634	4	331	1.6320		
1.616	4	330	1.6145		
1.604	3	312	1.6039		

TABLE 2	
Infrared Spectra of KMgLa(PO ₄) ₂ and LaPO ₄ (in cm ⁻¹)

Symmetry ν_3	LaPO ₄		LaPO ₄		KMgLa(PO ₄) ₂	
	-	1053 sh	1025	1055	1020	_
	1010	980	1010	986	1006	988
ν_1	946		947		948	
ν_4	621	575	612	572	617	572
•	559	532	559	531	558	530
ν_2	487		498		494	
Ref.	(9)		This work		This work	

 $(La_{0.94}Eu_{0.06}PO_4)$ does not change its spectrum from $LaPO_4$.

From Table 2, it can be seen that the IR spectrum of $KMgLa(PO_4)_2$ is similar to that of $LaPO_4$. This confirms that the structure of $KMgLa(PO_4)_2$ is also monoclinic with Cs site symmetry like that of $LaPO_4$.

The IR spectrum of KMgLa_{0.90}Eu_{0.10}(PO₄)₂ looks like that of KMgLa(PO₄)₂. It seems more likely that isomorphous substitution between La³⁺ and Eu³⁺ can take place.

Emission and Excitation Spectra

As shown in Table 2 in the KMgLa(PO₄)₂ matrix, the vibrational energy of the P–O bond is high (ca. 1000 cm^{-1}), which means that only 2–3 phonons are needed to fill the energy gap of 2000 cm^{-1} between the 5D_1 and 5D_0 (as well as between the 5D_2 and 5D_1) levels. Such a process involving simultaneous absorption of 2–3 phonons is highly probable and thus explains why the ${}^5D_0 \to {}^7F_j$ emission of Eu³⁺ in KMgLa(PO₄)₂ and LaPO₄ is predominant, as demonstrated in Fig. 2. The emission spectrum for KMgLa(PO₄)₂: Eu³⁺ we observed is in agreement with that reported previously in Ref. (3) except for the ${}^5D_0 - {}^7F_0$ transition. The corresponding wavelengths and energy levels of Eu³⁺ are listed in Table 3.

The number of observed emission lines (one for ${}^5D_0 \rightarrow {}^7F_0$, three for ${}^5D_0 \rightarrow {}^7F_1$, and five for ${}^5D_0 \rightarrow {}^7F_2$) indicates complete removal of 7F_j degeneracies; this may correspond to a lower point symmetry of the rare earth site, e.g., Cs, in agreement with the result obtained by X-ray diffraction (5).

The 7F_1 and 7F_2 baricenters for KMgLa(PO₄)₂: Eu_{0.10} at 300 K (found here at 381 and 1021 cm⁻¹), compared with those for LaPO₄: Eu_{0.06} (at 380 and 1024 cm⁻¹, are very close to each other.

Finally, comparing the excitation spectrum of KMgLa (PO₄)₂: Eu³⁺ with that of LaPO₄: Eu³⁺ (Fig. 3), we found the Eu³⁺ charge-transfer band (CTB) peaking at 260.5 nm

FIG. 2. Emission spectra of KMgLa(PO₄)₂: Eu_{0.10}³⁺ (above) and LaPO₄: Eu_{0.06}³⁺ (below) under 267-nm excitation at 300 K, O – j (j = 0, 1, 2) corresponding to ${}^5D_0 \rightarrow {}^7F_i$, respectively.

for the former and 259.5 nm for the latter. No striking change occurs in their excitation spectra.

It is necessary to point out that the maxima of CTB and ${}^5D_0 \rightarrow {}^7F_i$ transitions of LaPO₄: Eu³⁺ are different

TABLE 3 $^5D_0 \rightarrow {}^7F_j$ (j=0, 1, 2) Emission Lines of Eu³⁺ in KMgLa(PO₄)₂ and LaPO₄ under a 267-nm Excitation (T=300 K)

Transitions ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$	KMgLa(PO ₄) ₂		LaPO ₄					
	λ (nm)		<i>E</i> (cm ⁻¹)	λ (nm)		$E(\text{cm}^{-1}) E_{\text{exp}}^{a}$		$E_{\rm calc}{}^a$
	578.5	5D ₀	17,286	578.1	$^{5}D_{0}$	17,298		17,281
$^5D_0 \rightarrow ^7F_1$	587.5	$^{7}F_{1}$	265	587.0	$^{7}F_{1}$	262	261	262
,	592.5	•	408	592.0	·	406	406	411
	594.7		469	594.8		471	464	458
$^{5}D_{0} \rightarrow {}^{7}F_{7}$	612.0	^{7}F ,	946	611.7	$^{7}F_{2}$	950	943	954
•	612.8	_	967	612.5	_	971	_	978
	613.5		986	613.3		993	1021	1019
	615.0		1026	614.6		1027	1096	1091
	620.8		1178	620.4		1179	1178	1177

^a Ref. (6).

FIG. 3. Excitation spectra of LaPO₄:Eu $_{0.06}^{3+}$ (above) and KMgLa(PO₄)₂:Eu $_{0.10}^{3+}$ (below) with $\lambda_{em} = 592$ nm at 300 K.

from those reported in Refs. (10, 11). Our emission spectrum and energy levels for ${}^{7}F_{1}$ and ${}^{7}F_{2}$ on the Eu³⁺ ion in LaPO₄, however, are in good agreement with those reported recently by Elisabeth Antic-Fidancev *et al.* (6). Based on the accordance of Eu³⁺ spectra in LaPO₄ and

KMgLa(PO₄)₂, we can state that the Eu³⁺ ions in both matrices have the same coordination environment.

CONCLUSION

The crystal structure of KMgLa(PO₄)₂ can be deduced from that of monoclinic LaPO₄, in which half of the La³⁺ ions are couplingly substituted by K⁺ and Mg²⁺ ions with no remarkable change of the lattice. This isomorphous substitution has been confirmed by IR and Eu³⁺-doped excitation and emission spectra of KMgLa(PO₄)₂.

ACKNOWLEDGMENTS

The authors express their thanks to Dr. Ma Jianfang for the calculations of crystal-cell parameters and demonstration on the structure figure of LaPO₄. This project is sponsored by the Foundation of Natural Science and the Committee of Science and Technology of China.

REFERENCES

- M. Et-Tabirou and A. Daoudi, C. R. Seances Acad. Sci. Ser. C 291, 93 (1980).
- L. P. Keller, G. T. McCarthy, and R. G. Garvey, *Mater. Res. Bull.* 20, 459 (1985).
- A. Arbus, C. Duranceau, D. Zambon, and J. C. Cousseins, Eur. J. Solid State Inorg. Chem. 28, 499 (1991).
- G. W. Beall, L. A. Boatner, D. F. Mullica, and W. Q. Milligan, J. Inorg. Nucl. Chem. 43, 101 (1981).
- D. F. Mullica, W. Q. Milligan, and David A. Grossie, Inorg. Chim. Acta 95, 231 (1984).
- Elisabeth Antic-Fidancev, Jorma Hölsä, Michelle Lemaitre-Blaise, and Pierre Porcher, J. Phys. Condens. Matter 3, 6829 (1991).
- N. Howell Furman (Ed.), "Standard Methods of Chemical Analysis," 6th ed., Vol. 1, pp. 814, 1064. Van Nostrand, Princeton, NJ, 1962.
- 8. A. T. Aldred, Acta Crystallogr. Sect. B 40, 569 (1984).
- 9. A. Hezel and S. D. Ross, Spectrochim. Acta 22, 1949 (1966).
- 10. R. C. Ropp, J. Electrochem. Soc. 115, 841 (1968).
- 11. G. Blasse, J. Solid State Chem. 4, 52 (1972).